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The elastoplastic strain of metals being formed when they melt under the effect of a point heat
source with a pulse duration greater than 107% sec is considered in this paper. The time de-
velopment of the plastic strain and pressure domains in the melt is investigated. It is shown
that two plastic strain domains occur during the interaction under consideration: a relatively
broad domain of "mechanical" influence and a narrow domain of "thermal" influence. The
stress—strain distributions as well as the hydrostatic pressure in the fluid are determined by
a quasistationary temperature distribution starting with times corresponding to half (of the
quasistationary) the value of the melt radius X ~ 0.5, Itis shown that the dimensions of the weak
and strong plastic strain domains formed by heat and acoustic waves grow continuously to the
quasistationary values, while the hydrostatic pressure in the fluid reaches the maximum value
for X ~0.8...0.4. The ratio between the radii of the plastic strain zones and of the liquid bath
for a quasistationary temperature distribution in the first domain lies within the range 10-50,
and does not exceed 1.7 for Cu, Ni, and Fe in the second. The anomalous nature of the develop-
ment of the strong plastic strain domain in Al,because of migration of the metal grain bound-
aries to result in "collapse™ of the domain for the values X ~ 0.5 accompanied by a jumplike
diminution in the hydrostatic pressure in the fluid,is noted.

Traces of strong plastic strain [1, 2] have been detected on metal surfaces in the domain close to the
melt subjected to highly intensive pulsed heat sources. It has hence been noted that the magnitude of the hy-
drostatic pressure in the melt is 102-10% atm [1], which substantially exceeds the yield point of the majority
of metals. Therefore, it is necessary to consider the elastoplastic deformation scheme in solving the problem
of metal strain under the effect of a pulsed heat source.

An attempt has been made in [3] to estimate the contribution of plastic strains in the melting of a metal
by an electron beam focused under the metal surface, where it was assumed that the kinetics of melting can be
described in the approximation of a quasistationary temperature distribution. The presence of one plastic
strain phase was indicated in this paper, while two zones are detected experimentally [2], which differ essen-
tially in the concentration of dislocations. Moreover, a stationary temperature approximation does not take
account of the propagation velocity of the liquid phase boundary and does not yield a representation about the
development of strains at the initial instants.

An analytical solution of the self-consistent Stefan problem in the presence of elastoplastic strain of the
solid phase is fraught with great mathematical difficulties. Hence, it is interesting to solve model problems,
whose results permit at least a qualitative examination of the mechanism of this complex process.

An idealized problem of the plastic deformation of metals subjected to a point heat source whose inten-
sity does not exceed 10° W/cm? and which is within the bulk of the metal specimen is considered. The limita-
tion on the source intensity permits considering the main process in treating the material to be melting and
neglecting the contribution of different hydrodynamic effects. Let the depth at which the heat source lies sat-
isfy the condition L> V47, where Vg is the speed of sound in the material, and 7 is the time of pulse action.
This permits considering spherical symmetry conserved in both the heat-conduction and the deformation
problems.
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TABLE 1

Corresponding value of
Parameters of (8), (9) Roots of pressure (8)
Metal
al B g I 3uT,, (9) , 0
3 ] - o P,atm
(I—v)o, (I—v)o; 1
Cu 10.5 35 1.495 21 6 £.2-008
1,28 21.2 13-t
—1.23 — —
Ni 18.0 15 2.4 10 4.6 P4 108
1.6 8.0 24101
—1.35 — -
Fe i3 37 205 48 7.8 3.9-13
1.38 45 23104
—1.33 — —
Al 42 59 f.1 22 5.2 2,5-103

The temperature distribution in the solid phase depends strongly on the forward velocity of the phase
interface X =(1~X) /XZ, where X is the dimensionless radius of the melt [4], and causes a stress state which
varies with the time. The distribution of the thermoelastic stresses is quasistationary in the time interval in
which Vg>X, i.e., is time-dependent in terms of a parameter. It can be shown that the problem of thermo-
elastic stresses and strains can be considered in a quasistationary approximation in the stresses and strains
when

X > 244V 1454 — 1), (1)

where A = V,a*/B2, a* = F/2aQy, B == MT,, — T,)/Qy are constants; F is the power of the heat source, W; Q is
the specific heat of melting; cal/g; v is the specific gravity of the material, g/cm?; A is the coefficient of
thermal conductivity, cal/cm - sec - °C; Ty, is the melting point,°C; and T, is the temperature of the ambient
medium, °C. For intensities on the order of 10°-10° W/em? we have A> 1. Then the inequality (1) is repre-
sented as X = A™1/2, which corresponds to times on the order of (CW“)i/?‘Vgs/2 sec, when dimensionality is taken
into account. For the majority of metals under consideration this quantity does not exceed 1078 sec for a 100-W
power source, which allows quasistationary analysis of the problem of thermoelastic stresses and strains orig-
inating under the effect of a heat source with a pulse duration on the order of fractions of a microsecond and
more. Appropriate values of the melt radius do not exceed X;=0.1.

Let us consider a semiinfinite solid in which the boundary separating the liguid and solid phases has the
dimension X (£) (in the units o*/B) at a time ¢ [in the units (a*)?/8%], and the boundary separating the plastic
(adjoining the liquid) and elastic domains of the solid has the dimension Y(¢) =X(£). Let us use the scheme of
an elastoplastic body to find the thermoelastic stresses and the scheme of an ideally plastic body to describe
the plastic properties of the substance.

By virtue of spherical symmetry, the radial o, and tangential o, components of the stress tensor and the
corresponding components &y and € of the strain tensor are different from zero. Hence, oy and oy are con-
nected by the equilibrium condition, and e; and &; by the compatibility condition [5]:

do./dR — 2(o; — 0,)/R = 0; (2)
d/dR(Re,) — &, = 0. (3)
The boundary conditions are [6]
Orlp=x3) = —F;
Ol = 03 {4)

&lr=x(5) = & — kP,

where P is the hydrostatic pressure, atm, which is constant over the volume of the melted metal; g is the
change in specific gravity of the substance during melting; and ky is the coefficient of fluid compressibility.
The stresses, strains, and displacements should be continuous on the boundary between the elastic and plastic
domains; the plasticity conditions
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(6, — 0,) = 0(R), X(}) < R < Y(¥) (5)
should be satisfied in the plastic domain,

It should be emphasized that because of the presence of a temperature gradient in the solid phase, the
yield point o5(R) of the substance is a function of the temperature or the running radius, and its value on the
boundary between the elastic and plastic domains ag differs from the yield point o"s at a normal temperatdre.
Let us use the dependence of the yield point near the melting point [3] by taking account of the dependence of
the temperature distribution in the solid phase in the case of a quasistationary temperature distribution [4]

T(R, X(§)) = T.X(E)/R.

Then 0g(R) —o%4(Ty, —Tg)/ T =0 (1—X(£)/R) and o¥ can be writtenasog =o%(1-X(£)/ ¥(¢)). Taking account
of (5) and the connection between the stresses and sfrains in the elastic domain

(¢ = lo, — 2vo,}E + T, (6)
{st = l(l — '\;)O't — VO',.]J'E '{" aTv

where v is the Poisson ratio; E is the elastic modulus, atm; and ¢ is the linear coefficient of expansion of the
substance, (°C)1, (2} and (3) result in the following equations:

elastic domain Y{{) =R<«

(do,/dR — 2(6, — 6,)/R = 0,

7
|ds;/dR + (6, — 0,)/R = —Ea/{1 — v)-dT/dR;

plastic domain X{(¢) =R =Y(¢)
do,/dR = 20, (R)/R.

It can be shown that the radial and tangential components of the stress and strain tensors in the elastic
domain, which are a solution of (7), are determined by the elastic and plastic components. These latter can
be neglected in practice, since the yield point at normal temperature o“s is two-three orders less than the
elastic modulus for the majority of metals. The magnitude of the elastic components is determined by the
temperature gradient in the solid phase. Using the stress continuity condition on the boundary between the
elastic and plastic domains, we obtain an expression for the hydrostatic pressure in the fluid:

5
i}

P e 4 2Ba?, 41X (S
—2?82—2111},(3)— 3 T{m—r J_)_ET; (8)
Since it has been observed experimentally that the pressure in the fluid exceeds the yield point at normal
temperature by several tens of times, then the pressure is evidently determined mainly by the last member in
(8). The numerical value of P/ ZO‘OS depends on the ratio between the radii of the fluid drop and the plastic
strain zone. Therefore, the hydrostatic pressure in the fluid is characterized for elastoplastic strain by the
product of the ratio between the elastic modulus and the yield point °'0s and a quantity characterizing the in-
crease in the linear dimensions during heating to the melting point, or the quantity onsz/3(l—v)o°s. It is
interesting to note that the expression for the pressure in the fluid during pure elastic strain agrees with this
same value, but the product Ty, must hence be replaced by the value of the change in the specific gravity of
the substance during melting &).

Therefore, the quasistationary problem of elastoplastic strains turns out to be statically determinate,
since the pressure in the fluid, the stress and strain distribution in the elastic domain, and also the stress dis-
tribution in the plastic domain are determined in terms of the parameter Y(¢) without the need to find the strain
distribution in the plastic zone. To determine Y(¢), let us find the strain distribution in the plastic domain.
Under the assumption that the strain is small (g« 1), the volume mechanical properties of the elastic and
plastic zones are assumed identical [7]. In general form the volume expansion of a solid is described as

3 =g, + 28, = hy(0, + 20,) - 3aT,
where k,=(1—2v)/E is the coefficient of compressibility of the solid.

Using (2), the relationships between the strains and displacements £t=U/R, gx=dU/dR [where U(R) is
the displacement in the units o* /8], and also the continuity condition for the displacements on the boundary of
the elastic and plastic domains, let us write the expression for the displacements as

— i Ro. o T Y (7] 62(1—\’){, X (O]
U(R) = k,Ro, + — X(E)[Q’—ﬂg)_z]"'_ E 1‘}'(&)] Rz *
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from which we obtain by using (4)

o af,, yEel, eld=vy @]
R L R L 1

Assuming the compressibility coefficients of the liquid and solid phases to be equal k; =k,, we obtain a cubic
equation to determine the ratio Y(£)/X(¢):

YEr l b 11 )
2 ( _ {

I Gl 1) =0. (9)
X (3 ¥ (4 —v) 02 L2y

Since the values E/6? ~ 350 (7], aT, ~ 2-10-2, 3aT,/2¢, ~1.5. hold for the majority of metals, and v does not
emerge beyond the limit 0.3-0.5 in the temperature range from zero to Ty, the approximate equation for the
ratio Y(¢)/X(&) can then be written in general form as

YO X2 — 6.83Y(g)* X(¥)° ~ 5.8 = 0. {10)
and the magnitude of the pressure in the fluid as
Pi20] ~ 20T, Ei3 (1 —v)al X (£):) (E)~ T.8X (&)Y (%)

It can be seen that (10) has three real roots: 1; 6, 7; —0.85, from which the first two turn out to be acceptable
from physical considerations, Since the problem is practically transformed into a purely elastic problem for
Y(£)/X(¢) ~ 1, the single approximate value of the ratio Y(£)/X(¢t} turns out to be the ratio 6.7, to which the
following hydrostatic pressure corresponds:

Piol ~ 7.8/6.7 = 1.2.

Therefore, a plastic strain domain, whose dimensions exceed the melt radius several-fold, is formed
for a quasistationary temperature distribution in the solid phase subjected to a pressure on the order of the
material yield point. This agrees with the estimate of the plastic strain domain in a semiinfinite specimen
subjected to the effect of just hydrostatic pressure (without a temperature gradient). In this case the size of
the plastic domain i{s estimated to be 5-6 radii of the spherical cavity and the pressure needed o form it
to be several magnitudes of % [7].

The coefficients of (9) for different metals can be determined by using the data in Table 1. The solution
of the appropriate equations shows that (9) has two roots which do not contradict the physical sense for the
majority of metals. The first and greatest root, equal {n order of magnitude to

I PO (11)

2(1 —v)aol 2(f —v)o,
is determined by the elastic properties of the material and has values on the order of several tens, which cor-
responds to a broad plastic strain zone whose boundary is found for very low temperatures equal to 5, 10,
and 5% of Ty, for Cu, Ni, Fe, and Al, respectively. Therefore, the root (11) characterizes the zone of "me-
chanical” influence and corresponds to a "weak™ plastic strain wave detached from the phase-transition bound-
ary, in which the yield point of the material og(T) actually corresponds to the yield point at room temperature
og. The pressure in the melt hence turns out to be equal to several magnitudes of o%. The second root, equal
in order of magnitude to

2,

[ £,E (30T, j28, — 1) ]x/2~(3 25 \12 (12)
[(t=V) ol (al, Ejz(t—v)ol=1) |\ aTm) '

is determined by the ratio between the change in the specific gravity of the substance during melting g, and the
increase in the linear dimensions during heating to Ty, and has values somewhat exceeding one, which corre-
sponds to a narrow plastic strain zone or a zone of "hermal® influence whose boundary is at significant tem-~
peratures equal to 78, 63, and 72% of Ty, for Cu, Ni, and Fe, respectively. In this domain the yield point of
the material os(T) is considerably less than the yield point at normal temperature O‘OS because of the significant
temperature gradient. The pressure in the melt is hence 10-50 magnitudes of o-os. Aluminum has a somewhat
greater value of & compared to the other materials, and there is practically no "strong® plastic strain domain
for a quasistationary temperature distribution therein. The sharp distinction between the nature of plastie
strain in aluminum from that in other metals can be explained by the strong migration of the grain boundaries
at high temperatures, hindering the development of a high stress concentration [8]. As is seen from (12), the
maximum value of the root Y(£)/X(%) governing the size of the "thermal” influence domain 1.7, corresponds
to the case when no change occurs in the volume during melting (g, =0).
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Therefore, a sufficiently broad domain of "weak" plastic strain occurs for quasistationary melting, in
which the pressure is several magnitudes of 0'° A narrow "strong" plastic strain domain occurs near the
melt boundary for the majority of metals, where the yield point is substantially less than f’s and the pressure
in the melt exceeds ‘Ts several tens of times. The total pressure in the fluid is the sum of these two pressures.
The relative size of the plastic strain zone is independent of the source intensity. However, the absolute value
of the radius of the plastic strain domain depends on the source intensity in terms of the parameter X{(¢) in the
units F/2mA (T, —T) [4].

Let us consider the development of stress and strain with time by using the temperature distribution in
the solid phase [4] corresponding to the Stefan self-consistent problem with a point heat source:

T(R, X) = (1 — x)(nXR)"{1 — exp[—X(R — X)1}, (13)

where R and X are the running radius and the radius of the fluid drop in the units o*/g.n = B/a, x = T,/T,,. «
is the coefficient of temperature conduction of the solid phase, cm?/ sec.

The expression for the temperature (13) has been obtained in the range of distances X =R =R*(X), where
R*(X) corresponds to the boundary of the heat-wave front (in units a*/8) and is determined from the condition
R*(X)=X(2—X). For greater distances R =R*(X) the temperature distribution can be described by a depen-
dence of the form T(R, X) =T*®R*, X)R*/R which assures continuity of the temperature on the heat-wave front,
where

T¥(X)/T, =1 — (L — ] (K/(1 — X) @ — X)) [1 —e 07, (14)

Since n=Ty/ Ty =1, the temperature distribution in the solid phase is representable as
T(R, X)/T,, = 1 — [8(X)/RIl1 —e—(R—X2N® | X < R < R*(X); (15)
IR, X)'Tp, = [THR*. X)T,IR¥X)R = A,X'R, R*(X) < R<2 (16)

where §(X) = (nj{)-1 = n1X¥(1 — X); A, = T*(R*, X)/T,-R¥X)X. It should be emphasized that the tempera-
ture distribution in the form (15), (16) is considered starting with times corresponding to values of the melt
radius equal to 0.1. As is seen from (15), as the melt radius tends to the quasistationary value 1, the quantity
8(X)~ « and (15) becomes

T(R, X)'T,, = (X/R)I1 — 0.3[X/8(X)(R/X — 1)), X << R << R*(X), an
X —1.

By using (17) we estimate the value of the melt radius for which the second member in (17) is much less
than one and the temperature distribution over the whole solid phase is quasistationary. It can be shown that
this condition corresponds to the values X, =0.51/(1+0.57). Appropriate values of X, are 0.41; 0.49; 0.51;
0.67 for Al, Cu, Ni, and Fe, respectively.

Since the boundary of the zone of acoustic influence exceeds the boundary of the heat-wave front R*(X)
even for small times of action on the order of 107% sec, then the plastic strain domain with boundaries Y(X)
(in the units @*/B) is representable as two domains, in one of which (located beside the elastic domain), T(R,X)
is determined by (16), and in the other (adjoining the melt zone), by (15), (17). The temperature distribution in
the solid phase is represented in Fig. 1, where X(t) is the boundary of the liquid bath, R*(X) is the boundary of .
the heat-wave front, and Y{X) is the boundary of the plastic strain domain. Then the plasticity condition can be
written as

(0; —o0,) =0, (R) = 00-8(X)/R .[1 — e ~E=VND] - X < R R*(X); (18)
p.y X R N
(6, — 6,.);03(R)=0?{}——E——O,SW[T—Z——R-J}}. (19)

X< R<SR*(X), X-1;
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(0, ~6,) = 0, (RB) = o° [-1 BN ALAE R—H‘L] R*(X) < R< Y (X), (20)
where the value of the yield point on the boundary of the elastic and plastic domains o*é—’ equals aos(l—T* R* /
TmY) and does not agree with the yield point at a hormal temperature cros because of the presence of the tem-
perature gradient in the solid phase. The oy and o} in (18)-(20) denote the tangential and radial stresses, re-

spectively.

The elastic domain is YX) =R <. In this domain o and gy, related by the equilibrium condition, and
the radial ey and tangential ¢ strains related by the compatibility condition, yield the system of equations (7).
In addition, known relationships between the stresses and the strains (6) as well as condition (20) for R =Y(X)
and the second condition in (4) hold.

The plastic domain is X =R =Y(X). To find the stresses in this domain, let us use the first equation in
(7) while taking account of (18)-(20) and the continuity conditions for the stresses on the boundary of the elastic
and plastic domains, as well as the plastic stress domains with a different temperature distribution. More-
over, conditions (4) should be satisfied on the boundary with the liquid phase.

The solution of the equations for the stresses in the elastic and plastic domains results in expressions
for the radial stresses o in the plastic strain domains R*(X) =R = Y(X) with a temperature distribution of the
form (16) and X =R =R*(X) (for two time intervals X;=0.1<X =X, and X, =X = 1) with a temperature distribu-
tion of the form (15), (17), from which it is seen that they are determined by three components. The first are
due to thermoelastic stresses generated in the elastic strain domain; the second, by plastic stresses in the
domain R*(X) =R = Y(X) which are independent of the forward velocity of the phase interface; and the third, by
plastic stresses in the domain X =R =R*(X), which are dependent on the forward velocity of the boundary of
the heat-wave front. The latter components tend to zero as X~ 1 and X;=0.1. The main contribution to the
value of the stress is introduced by the first components, in which the term

Eal* () Eal,, X

- = = A
S(U—ve" Y T 3u—ve YO

plays the main role, where the quantity A, agrees with that in (16), and Y(X)/X is the ratio between the sizes
of the plastic strain and the melting zones.

To find the changes in the hydrostatic pressure values in the liquid phase with time, let us use the first
equation in (4) by equating it to the expressions obtained for the stresses in the plastic strain domains with a
different temperature distribution. Then

P YY) A [ Eal, 1 ¥ -
2(7;)_1-\3 - In AS TT{‘(I—\‘) C;) TEIT (X)’

where

A, = [8(X). X — XiR*(X)) — In [RMX)'X | — T*R*. X)/T,, — 1/3,

X, =01 X< Xy
Ay = (1 — X R¥X) I — 03[X8(X) (1 = R*(X)X)] — (X:8(X)]
CInlR*(X)X] — 13 — TXR*, X)/T,. X, < X < 1.

As is seen from (21), the thermoelastic stresses introduce the main contribution to the magnitude of the hydro-
static pressure in the fluid P/ 20-°S and &)~ —2/3 for X— 1 and (21) goes over into the equation for the quasi-
stationary temperature distribution (8). At a fixed time the value of P/ ZO"OS is determined by the product of the
coefficient A; characterizing the temperature distribution behind the heat-wave front, and the ratio between
the sizes of the plastic strain and melt domains Y(X)/X. To determine the size of the plastic strain domain,
let us find the strain distribution in the plastic strain domains with the different temperature distribution.

From the solution of the general equation for the displacements in the solid phase, obtained under the
approximation of small strains [7]

dU/dR + 2U.R = (30, + R-do,/dR) - 30.T.
we obtain the distribution of the tangential strains &4 in the plastic strain domains R¥(X) <R = Y(X) with a tem-
perature distribution of the form (16), and X =R =R*(X) (for two time intervals X;=0.1sX =X, and X, =X=1)

with a temperature distribution of the form (15), (17). Furthermore, taking account of the third equation in (4),
we obtain an equation to determine the ratio Y(X)/X in the two time intervals X1=0.1=X=X,and X, =Xs 1
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YY) Eely (] ¥2(X) &F [ *I', ]_
& 1[2<1_v)a;’ ’ 1] X Ty ey =0 (22)
(3 1E 0 R*3 38 (YY) [R*2 ; 362 (X) , 8(X
S=(rhE - e () -5 [(1*'T))_
— (1 SR d] x—a<x< Xy
By [ e |V e ER Zmi]=0 (23)
X 1 2(1—\’)0;’ ' X T (1—\:)03 2 T - )
R* 1, X [1 R 4R* | R*\
AsF[“l‘“?“]*0-55—(',?7[7—?(1*?*2;—'2)]’
X,<X<1.

It is seen from this last expression that Ay, is practically equal to one during the time interval X,=<X =<1;
hence, the ratio Y(X)/X is constant in this range, and (23) goes over into the equation for a quasistationary
temperature distribution (9) as X— 1. The cubic equations (22), (23) have two roots which do not contradict
the physical meaning. The first and greater root corresponds to acousticwave propagation, or propagationofa
"weak" plastic strain wave, and has the form

Y (X)) X ~ AEaT, 2(1 —v)al,

from which it follows that the maximal ratio Y(X)/X corresponds to the initial times. Appropriate values of
the sizes of the plastic strain zone Y(X) due to acoustic interaction are 2, 4, 9, and 4 for Ni, Cu, Fe, and Al,
and the times of acoustic wave traversal of these distances for a source of 100-W power are 2-107%; 5.107%;
2+1077; and 2 .10 sec, respectively.

Therefore, the formation of a "weak" plastic strain domain is due to the thermoelastic stresses origi-
nating in the solid phase because of a temperature distribution of the form (16). Magnification of the size of
the "weak" plastic strain domain (or the acoustic influence domain) is represented in Fig. 2 as a function of
the radius of the liquid bath X(1) up to the quasistationary values of 21, 48, and 22 for Cu, Fe, and Al.

The second and smaller root corresponds to the heat wave, or "strong" plastic strain wave, and is expressed
in terms of

Y(X)X ~ (A)—12(2A5 —2e/a T )% (24)
Y(X)/ X~ (A~ V2(3A0—2e0/a T, )12, (25)

As is seen from (24), (25), the formation of a "strong" plastic strain domain is due to the change in density of
the substance during melting which occurs on the phase-transition boundary. The change in the boundary of
the "strong® plastic strain domain (or the thermal influence domain) is represented in Fig. 3 as a function of
the liquid bath radius X(t) for Al, Cu, and Fe. As is seen from Fig. 3, as the heat wave advances deep into the
material, the "strong" plastic strain domain reaches the quasistationary state with radii 1.28 and 1.38 for Cu
and Fe. However, the "strong" plastic strain domain reaches the maximum value for Al at X ~ 0.5 and not at
X =1. Then "collapse" of the "strong" plastic strong domain, accompanied by a jumplike diminution in the
hydrostatic pressure in the fluid, seems to occur. The change in hydrostatic pressure in the liquid bath as a
function of its radius X(t) is represented in Fig. 4 for Al, Cu, and Fe. The nature of the change in the "strong"
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plastic strain domain in Al can be explained by migration of the metal grain boundaries at high temperatures,
which hinders the development of a high stress concentration in the metal [8].

The hydrostatic pressure in a fluid is evidently the sum of two pressures due to acoustic and thermal ef-
fects. A pressure on the order of several magnitudes of cros, which is generated because of thermoelectric
stresses, does not change in practice during the whole period of liquid drop development, and the pressure due
to a change ir density of the substance during melting determines the nature of the pressure change in the lig-
uid drop.

As is seen from Fig. 4, the nature of the change in hydrostatic pressure with time is dissimilar for dif-
ferent metals. However, the general tendency to pressure growth from the initial value corresponding to the
melt radius X;=0.1 to some maximum value corresponding to X ~ 0.2-0.5 is characteristic. The maximum
pressure, equal to 24, 34, and 16 kbar, is built up at melt radii on the order of 0.4, 0.25, and 0.5 for Cu, Fe,
and Al, respectively. The pressure increase is hence several yield points of the material at room tempera~
ture o%. Afterwards, the pressure in Cu and Fe drops smoothly to the quasistationary values of 15 and 23
kbar, which is less than the initial pressure corresponding to X;=0.1. Since Al does not sustain high stress
concentrations (on the order of several tens of the yield point at normal temperature) because of grain bound-
ary migration, "collapse® of the "strong" plastic strain domain seems to occur with an appropriate pressure
drop to the level characterizing the "weak" plastic strain domain and equal to 2.5 kbar.

Therefore, an estimate of the change in size of the plastic strain domain and of the appropriate values
of the pressure with time showed that the maximum values of the hydrostatic pressure originate for melt radii
on the order of 0.2-0.5. This is apparently related to the fact that this time is characterized by the maximum
volume of melted substance responsible for the magnitude of the hydrostatic pressure.

The presence of two plastic strain domains with a different concentration of dislocations and degree of
material hardening was observed experimentally during the effect of pulses of millisecond duration on iron [2].
A ratio Y(£)/X(¢) somewhat exceeding one has been obtained experimentally in investigations of the strain of
beryllium monocrystals subjected to radiation with 30 J energies and 1 msec pulse durations [1]. An estimate
of the size of the plastic strain domain for Fe is in satisfactory conformity with an experiment performed at a
500 W source intensity and 3.8 msec duration of the effect [2]. The experimental magnitude of the plastic
strain zone is 0.55 and 1.08 mm for a source intensity of 430 and 1200 W. An appropriate computational egti-
mate of Y(¢) is 0.52 and 1.10 mm. Therefore, the relationships obtained are in satisfactory qualitative cor-
respondence with the results of experiments [1, 2].
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